Optimization Online


Completely Positive Factorization by Riemannian Smoothing Method

Zhijian Lai (s2130117***at***s.tsukuba.ac.jp)
Akiko Yoshsie (yoshise***at***sk.tsukuba.ac.jp)

Abstract: Copositive optimization is a special case of convex conic programming, and it optimizes a linear function over the cone of all completely positive matrices under linear constraints. Copositive optimization provides powerful relaxations of NP-hard quadratic problems or combinatorial problems, but there are still many open problems regarding copositive or completely positive matrices. In this paper, we focus on one of such open problems; finding a completely positive (CP) factorization for a given completely positive matrix. We treat it as a nonsmooth Riemannian optimization, i.e., a minimization of a nonsmooth function over the Riemannian manifolds. To solve this problem, we present a general smoothing framework for nonsmooth Riemannian optimization and guarantee convergence to a stationary point of the original problem. An advantage is that we can implement it quickly with minimal effort by directly using the existing standard smooth Riemannian solvers, such as Manopt. Numerical experiments show the efficiency of our method especially for large-scale CP factorizations.

Keywords: completely positive factorization, orthogonality constrained problem, nonsmooth optimization, smoothing method, Stiefel manifold

Category 1: Linear, Cone and Semidefinite Programming

Citation: Department of Policy and Planning Sciences Discussion Paper Series No. 1377

Download: [PDF]

Entry Submitted: 07/05/2021
Entry Accepted: 07/06/2021
Entry Last Modified: 12/11/2021

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society