  


Exactness of Parrilo's conic approximations for copositive matrices and associated low order bounds for the stability number of a graph
Monique Laurent(monique.laurentcwi.nl) Abstract: De Klerk and Pasechnik (2002) introduced the bounds $\vartheta^{(r)}(G)$ ($r\in \mathbb{N}$) for the stability number $\alpha(G)$ of a graph $G$ and conjectured exactness at order $\alpha(G)1$: $\vartheta^{(\alpha(G)1)}(G)=\alpha(G)$. These bounds rely on the conic approximations $\mathcal{K}_n^{(r)}$ by Parrilo (2000) for the copositive cone $\text{COP}_n$. A difficulty in the convergence analysis of $\vartheta^{(r)}$ is the bad behaviour of the cones $\mathcal{K}_n^{(r)}$ under adding a zero row/column: when applied to a matrix not in $\mathcal{K}^{(0)}_n$ this gives a matrix not in any ${\mathcal{K}}^{(r)}_{n+1}$, thereby showing strict inclusion $\bigcup_{r\ge 0}{\mathcal{K}}^{(r)}_n\subset \text{COP}_n$ for $n\ge 6$. We investigate the graphs with $\vartheta^{(r)}(G)=\alpha(G)$ for $r=0,1$: we algorithmically reduce testing exactness of $\vartheta^{(0)}$ to acritical graphs, we characterize critical graphs with $\vartheta^{(0)}$ exact, and we exhibit graphs for which exactness of $\vartheta^{(1)}$ is not preserved under adding an isolated node. This disproves a conjecture by Gvozdenovi\'c and Laurent (2007) which, if true, would have implied the above conjecture by de Klerk and Pasechnik. Keywords: stable set problem \and $\alpha$critical graph \and sumofsquares polynomial \and copositive matrix \and semidefinite programming \and Shor relaxation Category 1: Linear, Cone and Semidefinite Programming (Semidefinite Programming ) Category 2: Combinatorial Optimization (Approximation Algorithms ) Citation: arXiv:2109.12876 Download: [PDF] Entry Submitted: 10/12/2021 Modify/Update this entry  
Visitors  Authors  More about us  Links  
Subscribe, Unsubscribe Digest Archive Search, Browse the Repository

Submit Update Policies 
Coordinator's Board Classification Scheme Credits Give us feedback 
Optimization Journals, Sites, Societies  