Optimization Online


An oracle-based framework for robust combinatorial optimization

Enrico Bettiol(enrico.bettiol***at***math.tu-dortmund.de)
Christoph Buchheim(christoph.buchheim***at***math.tu-dortmund.de)
Marianna De Santis(marianna.desantis***at***uniroma1.it)
Francesco Rinaldi(rinaldi***at***math.unipd.it)

Abstract: We propose a general solution approach for min-max-robust counterparts of combinatorial optimization problems with uncertain linear objectives. We focus on the discrete scenario case, but our approach can be extended to other types of uncertainty sets such as polytopes or ellipsoids. Concerning the underlying certain problem,the algorithm is entirely oracle-based, i.e., our approach only requires a (primal) algorithm for solving the certain problem. It is thus particularly useful in case the underlying problem is hard to solve, or only defined implicitly by a given software addressing the certain case. The idea of our algorithm is to solve the convex relaxation of the robust problem by a simplicial decomposition approach, the main challenge being the non-differentiability of the objective function in the case of discrete or polytopal uncertainty. The resulting dual bounds are then used within a tailored branch-and-bound framework for solving the robust problem to optimality. By a computational evaluation, we show that our method outperforms straightforward linearization approaches on the robust minimum spanning tree problem. Moreover, using the Concorde solver for the certain oracle, our approach computes much better dual bounds for the robust traveling salesman problem in the same amount of time.

Keywords: robust optimization, global optimization, simplicial decomposition

Category 1: Robust Optimization

Category 2: Global Optimization


Download: [PDF]

Entry Submitted: 12/24/2021
Entry Accepted: 12/24/2021
Entry Last Modified: 12/24/2021

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society