Optimization Online


Orbital $\varphi$-regularity in coincidence and fixed point problems in metric spaces

Tron Nguyen (nguyenhuutron***at***qnu.edu.vn)

Abstract: The purpose of the present paper is to establish some (approximate) fixed point or coincidence theorems for set-valued mappings defined on metric spaces under the so-called orbital \varphi-regularity of the considered mappings. This is a type of (\varphi,\gamma)-regularity of set-valued mappings which is weaker than orbital regularity. In turn, it is used in the previous work of the author [12] and before by Ioffe in the work [7] to ensure the existence of (approximate) fixed points or (approximate) coincidence points.

Keywords: Orbital regularity, orbital pseudo-Lipschitz, orbital $\varphi$-regularity, (approximate) coincidence point,(,γ)-regularity

Category 1: Nonlinear Optimization


Download: [PDF]

Entry Submitted: 12/28/2021
Entry Accepted: 12/28/2021
Entry Last Modified: 01/18/2022

Modify/Update this entry

  Visitors Authors More about us Links
  Subscribe, Unsubscribe
Digest Archive
Search, Browse the Repository


Coordinator's Board
Classification Scheme
Give us feedback
Optimization Journals, Sites, Societies
Mathematical Optimization Society