A Unifying Framework for Sparsity Constrained Optimization

In this paper, we consider the optimization problem of minimizing a continuously differentiable function subject to both convex constraints and sparsity constraints. By exploiting a mixed-integer reformulation from the literature, we define a necessary optimality condition based on a tailored neighborhood that allows to take into account potential changes of the support set. We then … Read more

An optimization-based method for feature ranking in nonlinear regression problems

In this work we consider the feature ranking problem where, given a set of training instances, the task is to associate a score to the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to … Read more

On the use of iterative methods in cubic regularization for unconstrained optimization

In this paper we consider the problem of minimizing a smooth function by using the Adaptive Cubic Regularized framework (ARC). We focus on the computation of the trial step as a suitable approximate minimizer of the cubic model and discuss the use of matrix-free iterative methods. Our approach is alternative to the implementation proposed in … Read more

Decomposition methods based on projected gradient for network equilibrium problems

In this work we consider the symmetric network equilibrium problem formulated as convex minimization problem whose variables are the path flows. In order to take into account the difficulties related to the large dimension of real network problems we adopt a column generation strategy and we employ a gradient projection method within an inexact decomposition … Read more

A concave optimization-based approach for sparse portfolio selection

This paper considers a portfolio selection problem in which portfolios with minimum number of active assets are sought. This problem is motivated by the need of inducing sparsity on the selected portfolio to reduce transaction costs, complexity of portfolio management, and instability of the solution. The resulting problem is a difficult combinatorial problem. We propose … Read more

Machine Learning for Global Optimization

In this paper we introduce the LeGO (Learning for Global Optimization) approach for global optimization in which machine learning is used to predict the outcome of a computationally expensive global optimization run, based upon a suitable training performed by standard runs of the same global optimization method. We propose to use a Support Vector Machine … Read more

Concave programming for minimizing the zero-norm over polyhedral sets

Given a non empty polyhedral set, we consider the problem of finding a vector belonging to it and having the minimum number of nonzero components, i.e., a feasible vector with minimum zero-norm. This nonsmooth combinatorial optimization problem is NP-Hard and arises in various fields such as machine learning, pattern recognition, signal processing. We propose two … Read more

An algorithm model for mixed variable programming

In this paper we consider a particular class of nonlinear optimization problems involving both continuous and discrete variables. The distinguishing feature of this class of nonlinear mixed optimization problems is that the structure and the number of variables of the problem depend on the values of some discrete variables. In particular we define a general … Read more