Strength of the Upper Bounds for the Edge-Weighted Maximum Clique Problem

We theoretically and computationally compare the strength of the two main upper bounds from the literature on the optimal value of the Edge-Weighted Maximum Clique Problem (EWMCP). We provide a set of instances for which the ratio between either of the two upper bounds and the optimal value of the EWMCP is unbounded. This result … Read more

A Combinatorial Flow-based Formulation for Temporal Bin Packing Problems

We consider two neighboring generalizations of the classical bin packing problem: the temporal bin packing problem (TBPP) and the temporal bin packing problem with fire-ups (TBPP-FU). In both cases, the task is to arrange a set of given jobs, characterized by a resource consumption and an activity window, on homogeneous servers of limited capacity. To … Read more

CliSAT: a SAT-based exact algorithm for hard maximum clique problems

Given a graph, the maximum clique problem (MCP) asks for determining a complete subgraph with the largest possible number of vertices. We propose a new exact algorithm, called CliSAT, to solve the MCP to proven optimality. This problem is of fundamental importance in graph theory and combinatorial optimization due to its practical relevance for a … Read more

A New Bilevel Optimization Approach for Computing Ramsey Numbers

In this article we address the problem of finding lower bounds for small Ramsey numbers $R(m,n)$ using circulant graphs. Our constructive approach is based on finding feasible colorings of circulant graphs using Integer Programming (IP) techniques. First we show how to model the problem as a Stackelberg game and, using the tools of bilevel optimization, … Read more

Variable and constraint reduction techniques for the temporal bin packing problem with fire-ups

The aim of this letter is to design and computationally test several improvements for the compact integer linear programming (ILP) formulations of the temporal bin packing problem with fire-ups (TBPP-FU). This problem is a challenging generalization of the classical bin packing problem in which the items, interpreted as jobs of given weight, are active only … Read more

A new branch-and-filter exact algorithm for binary constraint satisfaction problems

A binary constraint satisfaction problem (BCSP) consist in determining an assignment of values to variables which is compatible with a set of constraints. The problem is called binary because the constraints involve only pairs of variables. The BCSP is a cornerstone problem in Constraint Programming (CP), appearing in a very wide range of real-world applications. … Read more

A branch-and-cut algorithm for the Edge Interdiction Clique Problem

Given a graph G and an interdiction budget k, the Edge Interdiction Clique Problem (EICP) asks to find a subset of at most k edges to remove from G so that the size of the maximum clique, in the interdicted graph, is minimized. The EICP belongs to the family of interdiction problems with the aim … Read more

On the exact separation of cover inequalities of maximum depth

We investigate the problem of exactly separating cover inequalities of maximum depth and we develop a pseudo-polynomial-time algorithm for this purpose. Compared to the standard method based on the maximum violation, computational experiments carried out on knapsack and multi-dimensional knapsack instances show that, with a cutting-plane method based on the maximum-depth criterion, we can optimize … Read more

Submodular maximization of concave utility functions composed with a set-union operator with applications to maximal covering location problems

We study a family of discrete optimization problems asking for the maximization of the expected value of a concave, strictly increasing, and differentiable function composed with a set-union operator. The expected value is computed with respect to a set of coefficients taking values from a discrete set of scenarios. The function models the utility function … Read more

A new combinatorial branch-and-bound algorithm for the Knapsack Problem with Conflict Graph

We study the Knapsack Problem with Conflict Graph (KPCG), a generalization of the Knapsack Problem in which a conflict graph specifies pairs of items (vertices of the graph) which cannot be simultaneously selected in a solution. The KPCG asks for determining a maximum-profit subset of items of total weight no larger than the knapsack capacity … Read more