Mixed-Feature Logistic Regression Robust to Distribution Shifts

Logistic regression models are widely used in the social and behavioral sciences and in high-stakes domains, due to their simplicity and interpretability properties. At the same time, such domains are permeated by distribution shifts, where the distribution generating the data changes between training and deployment. In this paper, we study a distributionally robust logistic regression … Read more

Stability Regularized Cross-Validation

We revisit the problem of ensuring strong test-set performance via cross-validation. Motivated by the generalization theory literature, we propose a nested k-fold cross- validation scheme that selects hyperparameters by minimizing a weighted sum of the usual cross-validation metric and an empirical model-stability measure. The weight on the stability term is itself chosen via a nested … Read more

Mixed-Integer Optimization for Responsible Machine Learning

In the last few decades, Machine Learning (ML) has achieved significant success across domains ranging from healthcare, sustainability, and the social sciences, to criminal justice and finance. But its deployment in increasingly sophisticated, critical, and sensitive areas affecting individuals, the groups they belong to, and society as a whole raises critical concerns around fairness, transparency, … Read more

Rank-one convexification for convex quadratic optimization with step function penalties

We investigate convexification in convex quadratic optimization with step function penalties. Such problems can be cast as mixed-integer quadratic optimization problems, where binary variables are used to encode the non-convex step function. First, we derive the convex hull for the epigraph of a quadratic function defined by a rank-one matrix. Using this rank-one convexification, we … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

Polyhedral Analysis of Quadratic Optimization Problems with Stieltjes Matrices and Indicators

In this paper, we consider convex quadratic optimization problems with indicators on the continuous variables. In particular, we assume that the Hessian of the quadratic term is a Stieltjes matrix, which naturally appears in sparse graphical inference problems and others. We describe an explicit convex formulation for the problem by studying the Stieltjes polyhedron arising … Read more

Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

Learning Optimal Classification Trees Robust to Distribution Shifts

We consider the problem of learning classification trees that are robust to distribution shifts between training and testing/deployment data. This problem arises frequently in high stakes settings such as public health and social work where data is often collected using self-reported surveys which are highly sensitive to e.g., the framing of the questions, the time … Read more

ODTlearn: A Package for Learning Optimal Decision Trees for Prediction and Prescription

ODTLearn is an open-source Python package that provides methods for learning optimal decision trees for high-stakes predictive and prescriptive tasks based on the mixed-integer optimization (MIO) framework proposed in Aghaei et al. (2019) and several of its extensions. The current version of the package provides implementations for learning optimal classification trees, optimal fair classification trees, … Read more

Solution Path of Time-varying Markov Random Fields with Discrete Regularization

We study the problem of inferring sparse time-varying Markov random fields (MRFs) with different discrete and temporal regularizations on the parameters. Due to the intractability of discrete regularization, most approaches for solving this problem rely on the so-called maximum-likelihood estimation (MLE) with relaxed regularization, which neither results in ideal statistical properties nor scale to the … Read more