A Dantzig-Wolfe Single-Level Reformulation for Mixed-Integer Linear Bilevel Optimization: Exact and Heuristic Approaches

Bilevel optimization problems arise in numerous real-world applications. While single-level reformulations are a common strategy for solving convex bilevel problems, such approaches usually fail when the follower’s problem includes integer variables. In this paper, we present the first single-level reformulation for mixed-integer linear bilevel optimization, which does not rely on the follower’s value function. Our … Read more

Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact … Read more

On Multidimensonal Disjunctive Inequalities for Chance-Constrained Stochastic Problems with Finite Support

We consider mixed-integer linear chance-constrained problems for which the random vector that parameterizes the feasible region has finite support. Our key objective is to improve branch-and-bound or -cut approaches by introducing new types of valid inequalities that improve the dual bounds and, by this, the overall performance of such methods. We introduce so-called primal-dual as … Read more

On Coupling Constraints in Pessimistic Linear Bilevel Optimization

The literature on pessimistic bilevel optimization with coupling constraints is rather scarce and it has been common sense that these problems are harder to tackle than pessimistic bilevel problems without coupling constraints. In this note, we show that this is not the case. To this end, given a pessimistic problem with coupling constraints, we derive … Read more

Solving Decision-Dependent Robust Problems as Bilevel Optimization Problems

Both bilevel and robust optimization are established fields of mathematical optimization and operations research. However, only until recently, the similarities in their mathematical structure has neither been studied theoretically nor exploited computationally. Based on the recent results by Goerigk et al. (2025), this paper is the first one that reformulates a given strictly robust optimization … Read more

Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more

Mixed-Integer Bilevel Optimization with Nonconvex Quadratic Lower-Level Problems: Complexity and a Solution Method

We study bilevel problems with a convex quadratic mixed-integer upper-level, integer linking variables, and a nonconvex quadratic, purely continuous lower-level problem. We prove $\Sigma_p^2$-hardness of this class of problems, derive an iterative lower- and upper-bounding scheme, and show its finiteness and correctness in the sense that it computes globally optimal points or proves infeasibility of … Read more

Computational Methods for the Household Assignment Problem

We consider the household assignment problem as it occurs in the geo-referencing step of spatial microsimulation models. The resulting model is a maximum weight matching problem with additional side constraints. For real-world instances such as the one for the city of Trier in Germany, the number of binary variables exceeds 10^9, and the resulting instances … Read more

BOBILib: Bilevel Optimization (Benchmark) Instance Library

In this report, we present the BOBILib, a collection of more than 2600 instances of mixed integer bilevel linear optimization problems (MIBLPs). The goal of this library is to provide a large and well-curated set of test instances freely available for the research community so that new and existing algorithms in bilevel optimization can be … Read more

Exact Augmented Lagrangian Duality for Nonconvex Mixed-Integer Nonlinear Optimization

In the context of mixed-integer nonlinear problems (MINLPs), it is well-known that strong duality does not hold in general if the standard Lagrangian dual is used. Hence, we consider the augmented Lagrangian dual (ALD), which adds a nonlinear penalty function to the classic Lagrangian function. For this setup, we study conditions under which the ALD … Read more